If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-6=10
We move all terms to the left:
5x^2-6-(10)=0
We add all the numbers together, and all the variables
5x^2-16=0
a = 5; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·5·(-16)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*5}=\frac{0-8\sqrt{5}}{10} =-\frac{8\sqrt{5}}{10} =-\frac{4\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*5}=\frac{0+8\sqrt{5}}{10} =\frac{8\sqrt{5}}{10} =\frac{4\sqrt{5}}{5} $
| 18h-14h=-20 | | 58=-4(8p-4)-7(-6+7p) | | 5u-3u+u-u=10 | | -1/3=x-(1/4) | | w-3+3w-4+w+3=180 | | 34=w/3+16 | | 15u-5u+4u-7u-2u=20 | | 3(x/4)=7x/6 | | 5k^2-10=23k | | x+33=57 | | 2u-45+2u+u+5=180 | | (x-3)^2+(+5x)^2=9 | | 3/8y=15/16 | | 75x=3.7=1.7+1.75x | | 5x^2-16=10 | | -9.5x+0.79=-6.81 | | 40+2t-48+2t-12=180 | | 12u-4u-5u=18 | | 2a+10=7-9 | | (-1/3)x+7=4 | | 2x+1/7-3x-2/4=10 | | 499-1/3=x | | 2a-9=-13 | | -y+45=29 | | (x-9)(x)=2x-5x-8 | | 2v-14+2v-20+2v-20=180 | | x-(-15.5)=19.6 | | (x-3)^2+(5x+4-4)^2=9 | | 15=-1+4f | | 37=-8t-3 | | -21x^2+77x+28=0 | | (x-3)^2+(-4)^2=9 |